Sunday, April 15, 2012


The gallbladder is the end of the detoxification road that begins in the liver. Bile is the fluid into which the liver excretes its toxins. (The other routes of elimination are the sweat glands and the kidneys.) After bile is produced in the liver, it runs into the gallbladder and eventually into the intestinal tract. We have found that in many cases people with liver problems also have gallbladder problems, and vice versa.

Bile is made in the liver from cholesterol, bilirubin, and lecithin, and is then secreted into the gallbladder. While in the gallbladder, bile is concentrated by a reabsorption of the liquids back into the circulatory system. A proper ratio of bile components is necessary for it to remain in solution. Abnormal ratios promote the formation of cholesterol crystals or stones in the gallbladder. During a meal, bile is secreted by the gallbladder into the intestines to promote the digestion and breakdown of oils and fats. After the intestines absorb them, these bile-digested fats are used in the body to build cells, hormones, and prostaglandins (a group of chemicals that act like hormones).

When constipation occurs, bacteria in the intestines split the toxins that are bound up in the bile, in turn causing reabsorption of these already detoxified poisons. A diet high in vegetables will prevent constipation. Beta-glucuronidase is an intestinal bacterial enzyme that releases compounds for reabsorption. To prevent this reabsorption of toxins, an adequate supply of calcium d-glucarate, a natural ingredient in vegetables that inhibits beta-glucuronidase activity, is necessary. Charcoal will also bind up the bile and prevent toxins from being reabsorbed into the bloodstream.

Gallstones, a common complaint in North America, can easily disrupt the flow of bile. They are found in sixteen to twenty million Americans and are twice as common for women as men. Usually the stones are a mixture of cholesterol, calcium, bilirubin, and lecithin. Occasionally, however, the gallbladder also forms a stone consisting mainly of calcium with a little bit of cholesterol. My recommendations for gallstones, observe the following instructions:

1. Take lecithin daily. Cholesterol stones are caused when your liver excretes more cholesterol into the gallbladder than it does lecithin and bile acids. The cholesterol tends to “supersaturate” and form stones. A daily supplement of 500 mg of lecithin with meals keeps the bile flowing smoothly.

2. Limit dietary sugar. Sugar intake correlates with gallstone formation, suggesting that sugar stimulates cholesterol synthesis.

3. Take 5 g of soluble fiber (pectin in fruits, beans, or oat bran) daily with meals to absorb the bile in the gut.

4. Eat a healthy-fat diet to optimize bile production.

5. Eat small meals to ensure proper digestive capacity.

6. Avoid food allergens, which are notorious for provoking acute attacks of gallbladder inflammation. Eggs are considered the worst offender.

7. Take 500 mg of bile acids with every meal; this is usually 50 percent effective in reducing the size of the cholesterol variety of gallstones.

8. Take supplements of the amino acids methionine and taurine. Because women’s bodies make less taurine than men’s, this might be the clue to their twofold increased risk for gallstones. The dose is 1 g of each amino acid, between meals, twice daily.

9. Take dandelion root (Taraxacum officinalis) extract. It’s a superb cholegogue (releases stored bile), gentle in action, and safe to use. The dose of the solid extract is 1 teaspoon, 3 times a day. The solid extract is hard to find in the store, but the next best thing is to use the powdered root. The dose is 8 g as a tea, 3 times a day.


Your body doesn’t like to keep any molecules around for a long time. Even “good” molecules, such as hormones, are constantly being disassembled and reconstructed to prepare them to be recycled or eliminated. Thanks to detoxification enzymes, the liver is able to break up most molecules, even toxic and dangerous ones. Enzymes are molecules that act as catalysts in the transformation process. There are thousands of different enzymes, each with a unique role.

Think of this detoxification process as a two-phase wash cycle. Enzymes are like the soap that liberates grease into little droplets, removing impurities that the water can’t remove on its own. In the first part of the wash cycle (Phase 1), enzymes break toxins down into intermediate forms. Some toxins are ready for elimination at this stage, but others require a second wash cycle. In Phase 2, these intermediate compounds are routed along one of six chemically driven detoxification pathways, where they are further broken down, and then bound to specific types of protein molecules which act as “escorts” to guide them out of the body, allowing them to exit through the kidneys (in the form of urine) or the bile (in the form of feces). This process is called conjugation. Of the six pathways, three warrant special mention.

One of the most important systems in Phase 2 is the glutathione conjugation pathway, which utilizes glutathione for the detoxification of deadly industrial toxins such as PCBs, and the breakdown of carcinogens. Its activity accounts for up to 60 percent of the toxins excreted in the bile. Glutathione also circulates through the bloodstream combating free radicals. No other conjugating substance is as versatile as glutathione and the body’s supply of it, most of which is produced by the liver, is easily depleted. Exposure to high levels of toxins exhausts reserves of glutathione, possibly increasing susceptibility to cancer. Chronic disease, HIV, and cirrhosis use up reserves of glutathione. Excessive exercise, which increases oxidative stress and free radical production, and alcohol consumption, which blocks glutathione production, also deplete glutathione in the blood.

The weakest pathway in most people, from a dietary standpoint, is sulfation, the one responsible for the transformation of neurotransmitters, steroid hormones, drugs, industrial chemicals, phenolics (compounds derived from benzene, commonly used in plastics, disinfectants, and pharmaceuticals), and especially toxins from intestinal bacteria and the environment. Intake of too little dietary sulfur, a molecule that must come from our diets, is a cause of ineffective detoxification. If your exposure to substances that need to be detoxified via the sulfation pathway is high, but your sulfate reserves are low due to an inadequate diet, you will not be able to break down these toxins.

Studies have established a strong association between the function of the sulfation pathway and a variety of illnesses including Alzheimer’s disease, Parkinson’s disease, motor neuron disease, autism, primary biliary cirrhosis, rheumatoid arthritis, food sensitivity, and multiple chemical sensitivity. A comprehensive detoxification profile test identifies alterations in this pathway.

The body manufactures five different types of amino acids that form a third detoxification pathway: glycine, taurine, glutamine, arginine, and ornithine. Of these, glycine is the most important for the neutralization of toxins. In some cases, the body cannot make enough glycine to keep up with its own detoxification needs. Though not considered an essential amino acid because the body can make it, glycine production depends on an adequate intake of dietary protein. Individuals who eat a protein-deficient diet have trouble detoxifying environmental pollutants.

Glycine supplies can be depleted by lifestyle stresses. Benzoates for example, found in soft drinks, bind with glycine and rob the body’s store of it. One study found that people who consumed a large number of soft drinks had problems breaking down toluene, a common industrial organic solvent. Aspirin also slows down this detoxification pathway because it competes for available glycine in the liver. When the diet is supplemented with glycine, as well as the other nonessential amino acids, there is a noticeable improvement in the detoxification capabilities of many people.

Problems in Phase 1 and Phase 2 Detoxification

When the liver is “sluggish,” Phase 1 of the detoxification cycle may not be processing toxins at a normal and necessary speed. This causes toxins to accumulate in the bloodstream. If the hormone estrogen, for example, is not dismantled during Phase 1, the buildup can reach potentially harmful levels. Premenstrual tension can be an expression of this. Many factors can cause Phase 1 to become sluggish. As we age, our detoxification processes slow. Use of medications such as anti-ulcer drugs (cimetidine) and oral contraceptives; exposure to cadmium, lead, and mercury; and consumption of large amounts of sugar and hydrogenated fats hinder Phase 1 detoxification.

Substances that slow down Phase 1 detoxification, setting the stage for a toxic buildup, are called Phase 1 inhibitors. They affect the DNA of the liver cells, causing less detoxification enzymes to be produced. In addition to those mentioned previously, Phase 1 inhibitors include:



Capsicum (found in hot peppers)


Drugs containing benzodiazepenes and antidepressants


Ketoconazole (used in antifungal medications)

Toxins from bacteria in the intestines

A different type of detoxification problem develops if Phase 1 breaks down toxins at so fast a rate that Phase 2 cannot keep up. In this situation, the toxic intermediates produced during Phase 1 waiting to be washed out in Phase 2 flood the system. Many of these intermediate compounds—stuck in between Phase 1 and Phase 2—are more dangerous than the original toxin. This bottleneck can become a biochemical nightmare, damaging the liver, brain, and immune system.

Some of the substances that accelerate the breakdown of toxins in the liver by increasing the production of Phase 1 enzymes, without a concurrent increase in Phase 2 enzymes, are known carcinogens—pesticides, paint fumes, and cigarette smoke. Others are well known for their detrimental effects, such as alcohol and steroids. Even some otherwise harmless substances such as limonene from lemons, increase Phase 1 detoxification. But unlike cigarette smoke, limonene does not create dangerous intermediate molecules. As you read the following list, keep in mind that it is not strictly a list of “bad” things, but of those that increase the rate of Phase 1 detoxification, and that this becomes a problem only when Phase 2 can’t keep up.



Sulfonamide medications

Foods in the cabbage family

Charbroiled meats

High-protein diets

Citrus fruits

Vitamin B1

Vitamin B3

Vitamin C

Environmental toxins (exhaust fumes, paint fumes, dioxin, pesticides)

Cigarette smoke


Endotoxins from intestinal bacteria in the bloodstream

Exposure to a toxin, when coupled with exposure to another substance that speeds up Phase 1, is especially dangerous. The combination of alcohol and acetaminophen provides a good example. It’s not uncommon to drink heavily, and later take acetaminophen for the headache that follows. The intermediate compound (from acetaminophen) is an extremely toxic substance called n-acetyl-p-benzoquinoneimine (NAPQI). Under normal conditions, NAPQI is removed quickly during Phase 2, but alcohol intake forces more NAPQI into the liver than Phase 2 can handle.

Research has shown that specific foods and nutrients not only have a beneficial effect on detoxification capability, but can also provide a safe and viable approach to treating a variety of immune disorders and toxicity syndromes.

If two or more detoxification accelerants are combined, they can interact, with serious consequences. An individual on a prescription medication who smokes, for example, actually needs higher dosages of the medication because smoking causes the medication to be broken down faster than it normally would be during Phase 1. If Phase 2 can’t handle the extra burden, a detoxification bottleneck results. We predict that in the future, medical specialists will check detoxification capabilities in order to give more accurate drug prescriptions.

Problems in Phase 1 and Phase 2 liver detoxification are so prevalent, and have such a major impact on health that we believe it’s a good idea for everyone to have liver detoxification tests as part of a standard medical workup. This lab test can identify problems localized in the different detoxification pathways. If you suffer from chronic liver and gallbladder problems, you’re probably a candidate for this test. Abnormal results, of course, will require ruling out a liver disease before going ahead with detoxification therapy. Assessing detoxification function makes it possible to diagnose a problem before symptoms actually appear. Tests that measure Phase 1 and Phase 2 enzymes take much of the guesswork out of estimating the severity of liver detoxification dysfunction, and can to some extent indicate whether a person is at special risk for cancer, neurological disease, chemical and drug sensitivity, and immune problems.

Diet and Detoxification: Feeding Phase 1 and 2

You can take steps to keep your liver detoxification system running smoothly. Diet has a strong effect on detoxification enzymes, and foods can help “regulate” or balance Phase 1 and 2 activity. Eating foods that support the liver can reduce your susceptibility to damage from toxins and to conditions such as multiple chemical sensitivity syndrome, chronic fatigue syndrome, and cancer. Research has shown that specific foods and nutrients not only have a beneficial effect on detoxification capability, but can also provide a safe and viable approach to treating a variety of immune disorders and toxicity syndromes.

Essential fatty acids are vital for Phase 1 detoxification, and the standard American diet does not provide an adequate supply of these vital nutrients. Essential fatty acid intake in the form of cold-water fish and flaxseed oils have a demonstrated ability to heighten detoxification. Other sources of essential fatty acids include edible oils, such as those made from sunflower seeds, walnuts, and sesame seeds; wheat germ; and supplements of black current seed, borage, or evening primrose oil.

Eating fresh fruits and vegetables daily is a good way to continually replenish your body’s store of glutathione, necessary for one of Phase 2 pathways. High-quality protein nourishes both the amino acid and the sulfation pathways. Vegetable sources of sulfur for the sulfation pathways include radishes, turnips, onions, celery, horseradish, string beans, watercress, kale, and soybeans. Eggs, fish, and meat are also excellent sulfur sources.

Cabbage, brussels sprouts, broccoli, citrus fruits, and lemon peel oils support Phase 2 activity. Studies have shown dramatic results from consuming broccoli sprout extract, which inhibits the activity of Phase 1 enzymes and, simultaneously enhances the Phase 2 glutathione pathway. Broccoli sprout extracts are especially beneficial for people who have frequent or high-level exposure to pesticides, exhaust fumes, paint fumes, cigarette smoke, or alcohol. Anyone who is exposed to known carcinogens will benefit from broccoli sprout extract.

Foods to Support Liver Detoxification

Cabbage family

Cold-water fish

Flaxseed oil

Fruits (fresh)


Nuts and seeds


Safflower oil

Sesame seed oil

Sunflower seed oil

Vegetables (fresh)

Walnut oil

Wheat germ and wheat germ oil

Nutritional Supplements to Support Liver Detoxification


Black currant seed oil

Borage oil


Coenzyme Q10


Evening primrose oil

Folic acid









Silymarin (milk thistle)

Trace minerals

Vitamin A

Vitamin B6 (pyridoxine)

Vitamin B12

Vitamin C (ascorbic acid)

Vitamin D

Vitamin E

Vitamin K



Docosahexaenoic acid (DHA) is an important food in the brain development of children. DHA is found primarily in fish and breast milk. Not only is DHA required for nerve myelination, but DHA is also involved in synaptic function and signaling. This means that DHA is used in the construction and communication of brain cells. Scientific studies have shown that supplemental DHA causes improvement in learning ability, problem solving and even cognitive ability. Mother's milk contains DHA, whereas all infant formulas in the U.S. contain alpha-linolenic acid as the only omega-3 fatty acid. One study showed that full-term breastfed infants had scores 2.66 points higher cognitive abilities than those fed with formula. The only plant source of DHA is microalgae supplements. It is especially important for pregnant women to get extra DHA to feed the developing nervous system of their child. I feel that behavior and learning disorders like ADHD could be due to inadequate DHA intake during pregnancy and lactation. Pregnant and lactating women, should take at least 300 mg/d of DHA.


When your body is in pain and is not healing, you have to have a strategy for rehabilitating non-healing tissues like joints and muscles. The following strategies are excellent tools for feeding tissues and helping them regain normal function. The biggest mistake I see patients make in trying to heal chronic pain is that they will pick only one of the following strategies when all are required.

Replace Nutrients: specific nutrients like omega 3 fatty acids decreased stiffness and pain with no side effects. Minerals, bioflavonoids, antioxidants and amino acids are all necessary fro healthy muscle function.

Enhance Digestion: optimum intestinal health can correct unhealthy bacteria which cause joint inflammation and chronic muscle pain. Bacterial liposaccharides which are toxins from the bowel bacteria have been shown to disturb the maintenance of healthy joints. Therapy programs which correct intestinal permeability, food intolerence, bacterial imbalance, immune globulin deficiency, and diminished enzymes in digestion help to provide healthy, clean blood to damaged muscles and tendons.

Diminish Inflammation: bioflavonoids, amino acids and phytochemicals diminish chemical cascades of pain chemicals and balance the body chemistry. Natural proteolytic enzymes, herbal prostaglandin, leukotriene, and thromboxane blocking agents, and botanical circulation enhancers “move blood” and resolve pain and inflammation.

Optimize Motion: all forms of physical therapies must enhance motion of joints, soft tissue, and fluids in the body (blood, lymph, cerebrospinal fluid). The use of direct manipulation, fascial release, soft tissue “sculpting”, acupuncture, bee venom therapy, neural therapy, ultrasound, and hydrotherapy is applied according to the type of injury and stage of inflammation.